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In stochastic dynamical systems, different concepts of stability can be obtained in different limits. A par-
ticularly interesting example is evolutionary game theory, which is traditionally based on infinite populations,
where strict Nash equilibria correspond to stable fixed points that are always evolutionarily stable. However, in
finite populations stochastic effects can drive the system away from strict Nash equilibria, which gives rise to
a new concept for evolutionary stability. The conventional and the new stability concepts may apparently
contradict each other leading to conflicting predictions in large yet finite populations. We show that the two
concepts can be derived from the frequency dependent Moran process in different limits. Our results help to
determine the appropriate stability concept in large finite populations. The general validity of our findings is
demonstrated showing that the same results are valid employing vastly different co-evolutionary processes.
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I. INTRODUCTION

Evolutionary game theory [1] provides a powerful and
unifying mathematical framework widely used in scientific
areas as diverse as biology [2], economics [3], and social
sciences. More recently, it has been attracting growing inter-
est in physics [4—6], as several sophisticated techniques de-
veloped in the physics of complex systems have provided
useful insights into this interdisciplinary framework [7].
Originally, evolutionary game theory was formulated in
terms of infinite populations and the corresponding replicator
dynamics [8,9]. As a nonlinear dynamical system, these
equations are of great interest being formally equivalent to
the well studied Lotka-Volterra equations [9]. Much of our
present intuition is based upon this deterministic framework
that analyzes nonlinear systems of ordinary differential equa-
tions. However, any real population has finite size and also
individual-based computer simulations in unstructured or
structured populations [10-16] always deal with finite popu-
lations. As is well known in physics, the behavior of a finite
system can depart significantly from its infinite counterpart.

Recently, the concept of evolutionary stability has been
specifically investigated for finite populations [17,18] and
the traditional concept of evolutionary stability has been
challenged. Analyzing the connection between the two
frameworks of evolutionary stability we show that the differ-
ence between them is not solely based on finite size effects.

When selection is frequency independent, the idea of evo-
lutionary stability is simple: A population evolves until a
stable fixed point is reached at which fitness is maximized. In
contrast with this situation, in evolutionary game theory the
fitness of an individual depends on the type and frequency of
its competitors. Hence the optimization of individual fitness
can even lead to the decline of the average fitness, as in the
prisoner’s dilemma where each individual is better off not
cooperating, although mutual cooperation leads to higher fit-
ness [19].

1539-3755/2006/74(2)/021905(6)

021905-1

PACS number(s): 87.23.—n, 89.65.—s, 05.45.—a, 02.50.Le

The standard definition of evolutionary stability formu-
lated for infinite populations [1] is equivalent to strong sta-
bility of the corresponding fixed point in the replicator dy-
namics [9]: A strategy is an evolutionarily stable strategy
(ESS) if individuals with this strategy are always better off
than a small fraction of mutants. A similar result holds for
infinite populations subject to external noise: In the stochas-
tic replicator dynamics of Fudenberg and Harris [20], the
population stays nearly all the time close to an ESS if the
ESS corresponds to an interior state or if the payoff matrix
satisfies a certain definiteness condition [21]. Moreover, in
the stochastic replicator dynamics, strict Nash equilibria are
always asymptotically stochastically stable, provided the im-
pact of the external noise is not too strong. However, for
finite populations the concept of evolutionary stability has
been challenged, as an ESS defined as above is not necessar-
ily stable anymore whenever the population size is finite
[17]. Nowak et al. introduced a concept for evolutionary
stability in finite populations (ESSy) proposing the addi-
tional requirement that selection has to oppose replacement
by other strategies due to random drift [17]. For coordination
games corresponding to bistable situations, they also derived
the condition under which selection favors the replacement
of one strict Nash equilibrium by the other. They found that
replacement occurs if the unstable fixed point that is always
present in coordination games is closer than 1/3 to the strat-
egy to be replaced. This finding obtained for weak selection
contradicts the idea of evolutionary stability in infinite popu-
lations, where such a replacement cannot occur. Further-
more, even in simulations of finite populations such a re-
placement has not been demonstrated yet, as selection is
usually strong in these systems. Here we show that these two
apparently contradicting concepts actually emerge as differ-
ent limiting results of a unified treatment. Both the tradi-
tional ESS concept and the ESSy concept can be derived
from the frequency dependent Moran process in different
limits. However, these results do not rely on Moran dynam-
ics. Indeed, their general validity is shown to apply to other
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types of co-evolutionary dynamics, such as the frequency
dependent Wright-Fisher process [22] and the local update
process investigated in Ref. [23].

The remainder of this paper is organized as follows: In
Sec. II, we introduce the frequency dependent Moran process
and discuss how different limits lead to different concepts of
evolutionary stability. In Secs. III and IV, we show how the
results transfer to the local update process and the frequency
dependent Wright-Fisher process. Finally, we discuss impli-
cations on the fixation times in Sec. V.

II. FREQUENCY DEPENDENT MORAN PROCESS

In evolutionary game theory, the fitness of an individual is
determined by the payoff from its interactions with others.
An A individual will obtain a payoff a from an interaction
with A individuals and b from B individuals. Similarly, B
individuals gain ¢ from A and d from B. Hence the payoffs
are given by

B i—1 +bN—i (1)
TATINATONCT
i N-—i-1

= + 2

TN 1T TN @

for the types A and B, respectively. N is the population size
and i is the number of A individuals in the population. Self-
interactions have been excluded. For the frequency depen-
dent Moran process [17], the fitness of an individual is a
linear combination of a background fitness and the payoff
from interactions, fy=1-w+wm, for A individuals and
analogously for B. The parameter O0<w=1 measures the
intensity of selection. For w<<1, selection is weak and the
payoff of the game has only a marginal influence, whereas
the background fitness becomes negligible for w— 1.

We assume that the fitness is always positive. An indi-
vidual chosen proportional to its fitness produces one identi-
cal offspring which replaces a randomly chosen individual.
The probability to increase the number of A individuals from
itoi+1is

. N
Ty = ANl G)
ifa+ (N=i)fg N
whereas the probability to decrease it from i to i—1 is
N_i .
rp=— s L @)

T ifa+ (N= DN

Since T-(N)=0 and T*(0)=0, this process has absorbing
states at i=0 and i=N. For large N, the master equation de-
scribing this process can be approximated by a Fokker-
Planck equation with drift a(x) = T"(x)—T (x) and diffusion
b*(x)=[T*(x)+T (x)]/N, where x=i/N is the fraction of
type A in the population [23]. This Fokker-Planck equation
corresponds to the stochastic differential equation

dx = a(x)dt + b(x)dW(z), (5)
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where W(r) is the Wiener process, (W(s)W(t))=min(s,?)
[24]. For the frequency dependent Moran process, we have

falx) = fp(x)
xfa(x) + (1= x)fp(x) '

(1-x)  falx) +fpx)
N xfa(x) + (1 —x)fp(x) -

For fixed selection intensity w and N— o, b(x) vanishes and
a deterministic replicator equation is obtained from the fre-
quency dependent Moran process [23]. In this deterministic
limit, a stable coexistence of A and B is possible.

However, if Nw <1, the stochasticity is retained even in
the limit of infinite population size and the system will even-
tually get absorbed in the state x=0 or x=1. The probability
that the system gets absorbed in x=1 starting from x, (in
other words, the probability to reach the state with A indi-
viduals only) can be computed from the drift and diffusion
term as

(6)

a(x) = x(1 -x)

bx) ~

(7

S(xp)

P(xo) = Tl),

where S(x) = f e‘f?;r(Z)dzdy, (8)
0

and I'(z)=2a(z)/b*(z) [25]. It is noteworthy that there are

similarities between our absorption probabilities Eq. (8) and

the results of Ref. [26] in which a quantum description of

game dynamics has been explored.

For neutral selection, w=0, the drift term vanishes,
a(z)=0, and the fixation probability is simply the initial frac-
tion of type A, ¢(xg)=x,. For w<1, the ratio I'(z) that de-
termines the fixation properties of the process becomes

I'(z) = Nw(my — mp) = Nw(az + B), )

where a=(a-b-c+d)N/(N-1) and B=(-a+bN-dN
+d)/(N-1). A particular interesting case is Nw << 1, in which
the fixation probability Eq. (8) is given by

B(x) ~x+%Nx(1 — ol +x) +34]. (10)

For x=1/N, this reduces to the fixation probability of a
single mutant in the limit of weak selection, which has been
computed directly from the Moran process in Ref. [17]. Se-
lection favors A replacing B if the fixation probability of a
single A mutant is higher than the fixation probability of a
neutral mutant, which amounts to ¢(x)>x. For the evolu-
tionary stability of the state with B individuals only, the con-
dition ¢p(x)>x is of interest in the vicinity of x=0. After
derivation with respect to x we find for x=0 the condition
S(1)<S8'(0)=1. For N—c and w—0 with Nw <1, the de-
velopment of S(1) <1 reduces to a+2b>c+2d.

For a>c¢ and b>d, the fitness of A is larger than
the fitness of B for any number of mutants. In this case,
the condition S(1)<1 is always fulfilled and A will invade
the population with a higher probability than a neutral mu-
tant. On the other hand, for a <c and b <d, the strategy A is
disadvantageous and the probability for its invasion is
smaller than that of a neutral mutant. However, the
most interesting case is associated with situations in which
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74— 7 changes sign for a certain x. Here, we concentrate on
coordination games in which a>c¢ and b <d. In these games,
the situation with 100% A or 100% B individuals are strict
Nash equilibria: If the population is dominated by type A, a
B mutant is disadvantageous, but if B dominates, A individu-
als become disadvantageous. Coordination games are
bistable, i.e., for an intermediate number of mutants the pre-
ferred direction of the evolutionary process changes, as the
drift term a(x) changes sign. Whereas in the deterministic
replicator equation x=0 and x=1 are stable fixed points, sto-
chasticity can lead from one point to the other, similar to a
physical process in which stochastic fluctuations enable a
particle to overcome an energy barrier. In asymmetric situa-
tions, stochasticity favors one equilibrium over the other, de-
pending on the position of the unstable fixed point x" be-
tween them. When this point is close to 0, it is relatively easy
for A to invade, as a small group of A individuals changes
the sign of the drift term a(x). More specifically, for a>c
and b <d selection favors A replacing B if

y d-b 1
x=— < -, (11)
a-b-c+d 3

where x” is the unstable equilibrium of the game at which the
fitness of both strategies is the same, 7,=mp. This result
coined as 1/3 rule by Nowak et al. can be derived directly
from the exact fixation probabilities of the Markov chain and
is valid for Nw<<1. It is a central result of the ESSy concept
[17]. It can also be obtained in the same limit from Eq. (10)
with x=1/N. Furthermore, Eq. (10) shows that this 1/3 rule
extends beyond the case of a single mutant and is also ob-
tained if the fixation probability of a fixed number of mutants
is investigated.

In general, the stochasticity arising from finite populations
is qualitatively different from the Gaussian noise incorpo-
rated in Eq. (5). Therefore it is remarkable that the approxi-
mation of population dynamics in finite populations with sto-
chastic differential equations agree for weak selection
perfectly with the direct calculation for arbitrary N, although
the Langevin approximation implicitly assumes large popu-
lations. However, if w remains bounded away from zero, we
can no longer assume Nw<<1 for N— and the 1/3 rule is
violated, as illustrated in Fig. 1. In this case, we obtain for

w<l
1 y
S(1) = f exp|:—NwJ (ax+B)dx]dy
0 0

=1/ iﬁezg[erf(zl) —erf(zg)], (12)

where erf(x)=(2/ \J’TT) I ’(gdye‘y2 is the error function and
z;=(ai+B)yNw/(2a). For coordination games with a>c¢
and b<d, the right hand side of Eq. (12) diverges for
N—o and fixed w<1. Therefore S(1)>1 and selection
never favors A replacing B in this setting. As B and A are
ESS in coordination games, this is exactly what the tradi-
tional evolutionary stability predicts. Hence we have shown
that evolutionary stability depends on the quantity Nw, i.e.,
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FIG. 1. (Color online) The favored equilibrium in a bistable
situation given by a coordination game depends on the position of
the unstable equilibrium x*. Here, the position of x* for which se-
lection in finite populations favors the replacement of the Pareto
optimal equilibrium B (with the higher payoff) by the risk dominant
strategy A (with a larger basin of attraction) is computed numeri-
cally for different N and fixed w=0.001. x" is shifting towards the
pure B strategy with increasing Nw, i.e., decreasing degree of sto-
chasticity. For Nw << 1, the equilibrium has to be at x"<1/3 for A to
replace B irrespective of the process at stake (the local update pro-
cess, the Moran process, or the frequency dependent Wright-Fisher
process). For Nw—  the equilibrium converges to the pure B strat-
egy, as expected for the replicator dynamics where selection never
favors A replacing B if B is a stable fixed point. Although these
limiting results hold for all three processes, the position of x* will
depend on the specific co-evolutionary process and the payoff ma-
trix (a=1, b=0, c=3-2/x"<-3, d=2, w=0.001).

the size of the population times the intensity of selection.
Nw<1 leads to the ESSy concept from Ref. [17], whereas
Nw>1 reveals the traditional ESS concept [1]. There is no
contradiction between these notions of evolutionary stability:
They both constitute two extreme limits of the quantity Nw.
Indeed, as explicitly shown in the next two sections, this
result does not depend on the frequency dependent Moran
process adopted so far.

For intermediate values of Nw, the position of the un-
stable equilibrium x” such that selection favors the replace-
ment of B by A can be solved numerically from S(1)=1 for
a given payoff matrix, as shown in Fig. 1. For x<x" selec-
tion favors replacement of B by A, for x>x" this replace-
ment is not favored. Equation (12) depends on the payoffs as
a function of « and 3 and not only as function of x". There-
fore there is no universal relation analog to the 1/3 rule for
fixed Nw. In general, the position of the unstable equilibrium
will depend on all entries in the payoff matrix and not only
on a certain combination of them. In Fig. 1, one parameter of
the payoff matrix is varied and the resulting position of x" is
shown. For coordination games (a>c¢ and d>b) with d>a,
B is a Pareto optimal equilibrium that maximizes payoffs, as
the equilibrium with A players only yields a lower payoff.
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Furthermore, the condition a—c >d-b implies that A is risk
dominant, i.e., equilibrium A has a larger basin of attraction
than B. If the level of stochasticity is small, Nw> 1, replace-
ment of the Pareto optimal equilibrium only occurs if the
basin of attraction of this equilibrium is very small. For high
stochasticity, Nw << 1, replacement of the Pareto optimal by
the risk dominant equilibrium is much more likely.

We note that we do not consider a thermodynamical limit
here, as the properties of the system are not conserved. A
more detailed account on the thermodynamical limit of the
frequency dependent Moran process is given in Ref. [27].

III. LOCAL UPDATE PROCESSES

To demonstrate the general validity of our result for evo-
lutionary stability, we show that the two limits Nw<<1 and
Nw>1 lead to the same result for two vastly different pro-
cesses. In this section, we consider the local update process
discussed in Ref. [23]. In this process, two individuals are
chosen at random from the population. Only the choice of
two different individuals can change the composition of the
population. In mixed pairs, the A individual replaces the B
individual with probability

p=—+———= (13)

where A7 is the maximum possible payoff difference. The B
individual replaces the A individual with probability 1—p. As
for the Moran process, w determines the intensity of selec-
tion: For small w, stochastic effects are frequent, whereas
w— 1 leads to strong selection. This process is described by
the transition probabilities

(i) = iN l( 1

N N

iz " WB) (14)

—*
2 2 Aw
Again, the birth-death process can be approximated by a sto-

chastic differential equation, where the drift a(x) and the
diffusion b(x) are given by [23]

a() =x(1-9 Am@-m).  (15)

b*(x) = x(1 = x)IN. (16)

In this case, I'(x)=2Nw(ax+ B)/ A, which is linear in x for
arbitrary intensity of selection w. Hence we can compute the
fixation probability Eq. (8) explicitly,

_ erfl{(x)] - erf[£(0)]
erf[{(1)] - erf[£(0)]”

where {(x)=(ax+ B)\Nw/(aA). For weak selection w<1,
the expansion of the error functions in Eq. (17) leads to Eq.
(10) again with w—2w/Am. For x=1/N, this reduces ex-
actly to the result derived directly from the Markov chain in
Ref. [23]. Again, we can ask under which circumstances se-
lection favors A replacing B. Since I'(x) is up to a constant
factor identical to the corresponding function for the Moran
process for weak selection, Eq. (12) is again obtained for the

#(x) (17)
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local update process. However, here it is valid for any selec-
tion intensity w.

For Nw<1, Eq. (11) is recovered again. Hence the 1/3
rule is valid for weak selection even for the local update
process. However, for Nw>1 selection will never favor A
replacing B in a coordination game as ¢(x) <x for x<<1, see
also Fig. 1. This implies that any finite w guarantees evolu-
tionary stability in the limit N — . Hence Nw> 1 leads back
to the traditional concept of evolutionary stability as ob-
tained above for the Moran process.

IV. FREQUENCY DEPENDENT WRIGHT
FISHER PROCESS

As a third example, we consider the frequency dependent
Wright-Fisher process, in which individuals reproduce pro-
portional to their fitness f,=1-w+wmy, similar to the Mo-
ran process. However, here reproduction is not directly con-
nected to death. Instead, the new generation is sampled at
random from a large population constituted by the offspring
of all individuals. Hence each time step corresponds to an
entire generation with N time steps in the Moran process.
The dynamics of this process is given by the transition ma-
trix [22]

o)

NG INifa+ (N=i)fg) \ifa+ (N =i)fp
resulting from binomial sampling. As this matrix is not tridi-
agonal, we explicitly derive a(x) and b(x). The drift term is
given by a(x)=(x,.a,—x,)/At, where At is the time step and
x, is the fraction of A individuals at time #, x,=i,/N. With
At=1/N, this yields

falx) = fpx)

xfa(x) + (1 = x)fp(x)
Similarly, the diffusion b?(x)=((x,,A,—x,)*)/ At is

Sa@)fp(x) + Nx(1 = 0)[fa(x) = f(0)
[fa(x) + (1= x)fp(0) P '

a(x) = Nx(1 —x) (18)

b*(x) = x(1 -x)

(19)

Again, we first consider weak selection. The population
size enters in the diffusion term as Nw?. Hence for weak
selection Nw?<1 is required (in contrast to the processes
discussed above, where Nw<1 was sufficient). For weak
selection, the diffusion term becomes b(x)=+x(1-x)
whereas the drift term is a(x)=Nx(1-x)[f4(x)—fz(x)].
Hence I'(x) =2Nw(mr4— 7p), which is up to a factor 2 iden-
tical to the corresponding equation for the Moran process, cf.
Eq. (9). Consequently, all results for weak selection, transfer
to the frequency dependent Wright-Fisher process. In par-
ticular, Egs. (10) and (11) are obtained again, i.e., the 1/3
rule is fulfilled, as shown by a different approach in Ref.
[22].

For w<1 and Nw>1, the argumentation can be trans-
ferred directly from the Moran process, which leads to a
violation of the 1/3 rule again. In other words, selection
never favors one strategy replacing the other in coordination
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FIG. 2. (Color online) For a game with mixed Nash equilibrium (payoff matrix given in the figure), the conditional average fixation time
for a single mutant 7(1/N) increases exponentially with the population size even for weak selection, w=0.001 (symbols). The fixation times
for the local update process (filled squares) and the Wright-Fisher process (triangles) are indistinguishable (note, however, that the intrinsic
time scales differ by a factor N, see text). The corresponding fixation times for the Moran process (circles) increase slower, but still
exponentially. Lines: For a coordination game (payoff matrix given in the figure, w=0.1), the conditional average fixation time for a single
mutant 7(1/N) decreases slower than exponentially for the Moran process (full line), the local update (dashed line), and the Wright-Fisher
process (dotted line). Specifically, for the Moran process it has been shown that it increases as ~N In N [28].

games with finite w and N — o as illustrated in Fig. 1. There-
fore the traditional ESS concept is sufficient in this limit.

V. FIXATION TIMES

So far, we have only considered fixation probabilities.
However, when the conditional average fixation time T(x,)
for fixation in x=1 starting at x, becomes very large, fixation
probabilities are of limited interest. For systems described by
Eq. (5), they can be computed in an elegant way based on the
backward Kolmogorow equation [25]. In particular, T(x,) is
given by

1
T(xp) =N J t(x,x0)dx, (20)
0

where time is measured in elementary time steps and

21 = g 1¢) prrioyae

t(x,x) = Fox) b 0) S(x) 0=<x<x,,
2 "X
£(x,x0) = %” oFOES(1) - S(x)] xp=x=<1.

For neutral selection, w=0, we have S(x)=d¢(x)=x, and
b(x)=~2x(1-x)/N for the Moran process. T(x) is given by

T(xo) = = N*(1/x0 — DIn(1 = xg). (21)

For xo=1/N and large N, this reduces to T(1/N)=N(N-1),
which is identical to the result given in Ref. [28]. For the
local update process, we obtain T(1/N)=2N(N-1) for
N>1. Similarly, the Wright-Fisher process yields

b(x)=4x(1-x), which results in the time 7(1/N)=2(N-1).
For w> 0, the fixation times can be computed from the inte-
gral Eq. (20). As this can only be done numerically in gen-
eral, two examples are given in Fig. 2, where the asymptotics
derived in Ref. [28] for the Moran process with w=1 is
found for all three processes. Since any w <1 can be mapped
to w=1, this asymptotics is of general validity [30].

VI. SUMMARY

We have shown how to naturally relate the concept of
ESSy and ESS. In this context, the quantity Nw, i.e., the
intensity of selection times the population size, plays the role
of an order parameter which determines the concept of evo-
lutionary stability under consideration. Similarly, in popula-
tion genetics the product of fitness difference and population
size is the relevant parameter [25,29]. For Nw<1 we find
that the 1/3 rule discussed by Nowak et al. [17] for the
Moran process is generally valid and extends from the con-
sideration of a single mutant to the more general case of the
invasion of a small number of mutants. Moreover, the con-
cept of evolutionary stability in finite populations extends to
other coevolutionary processes beyond the scope of the fre-
quency dependent Moran process. However, for fixed w and
N> 1, this concept is replaced by the traditional concept of
evolutionary stability. We have demonstrated that the transi-
tion between these concepts is continuous, although the func-
tion that links both processes may be distinct for different
processes. The results for the fixation times match perfectly
with this picture: Whenever selection leads to a pure strategy,
fixation is faster than for neutral selection [28]. However, in
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games with mixed Nash equilibria, the time for the fixation
of a pure strategy increases exponentially with N, which is
consistent with a very fast decay of the stationary distribu-
tion of the Moran process [30] and the prediction of the
replicator dynamics that the pure strategies are unstable fixed
points.

PHYSICAL REVIEW E 74, 021905 (2006)
ACKNOWLEDGMENTS

A.T. acknowledges support from the “Deutsche Akademie
der Naturforscher Leopoldina” (Grant No. BMBF-LPD
9901/8-134). J.M.P. acknowledges financial support from
FCT, Portugal.

[1]J. Maynard Smith, Evolution and the Theory of Games (Cam-
bridge University Press, Cambridge, England, 1982).
[2] M. A. Nowak and K. Sigmund, Science 303, 793 (2004).
[3] H. Gintis, Game Theory Evolving (Princeton University Press,
Princeton, NJ, 2000).
[4] H. Ebel and S. Bornholdt, Phys. Rev. E 66, 056118 (2002).
[5] G. Szab6 and C. Hauert, Phys. Rev. Lett. 89, 118101 (2002).
[6] F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104
(2005).
[7] C. Hauert and G. Szab6, Am. J. Phys. 73, 405 (2005).
[8] P. D. Taylor and L. Jonker, Math. Biosci. 40, 145 (1978).
[9]J. Hofbauer and K. Sigmund, Evolutionary Games and Popu-
lation Dynamics (Cambridge University Press, Cambridge, En-
gland, 1998).
[10] G. Szab6 and C. Toke, Phys. Rev. E 58, 69 (1998).
[11] P. Holme, A. Trusina, B. J. Kim, and P. Minnhagen, Phys. Rev.
E 68, 030901(R) (2003).
[12] A. Traulsen and J. C. Claussen, Phys. Rev. E 70, 046128
(2004).
[13]J. Vukov and G. Szab6, Phys. Rev. E 71, 036133 (2005).
[14] E. C. Santos, J. E. Rodrigues, and J. M. Pacheco, Phys. Rev. E
72, 056128 (2005).
[15] E. M. Rauch and Y. Bar-Yam, Phys. Rev. E 73, 020903(R)
(2006).

[16] F. Santos, J. Pacheco, and T. Lenaerts, Proc. Natl. Acad. Sci.
U.S.A. 103, 3490 (2006).

[17] M. A. Nowak, A. Sasaki, C. Taylor, and D. Fudenberg, Nature
(London) 428, 646 (2004).

[18] G. Wild and P. D. Taylor, Proc. R. Soc. London, Ser. B 271,
2345 (2004).

[19] R. Axelrod, The Evolution of Cooperation (Basic Books, New
York, 1984).

[20] D. Fudenberg and C. Harris, J. Econ. Theory 57, 420 (1992).

[21] L. A. Imhof, Ann. Appl. Probab. 15, 1019 (2005).

[22] L. A. Imhof and M. A. Nowak, J. Math. Biol. 52, 667 (2006).

[23] A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett.
95, 238701 (2005).

[24] N. G. v. Kampen, Stochastic Processes in Physics and Chem-
istry, 2 ed. (Elsevier, Amsterdam, 1997).

[25] W. J. Ewens, Mathematical Population Genetics (Springer,
Berlin, 1979).

[26] M. Lissig, e-print cond-mat/0206093.

[27] F. A. C. C. Chalub and M. O. Souza, e-print math.AP/0602530.

[28] T. Antal and 1. Scheuring, e-print g-bio/0509008.

[29] J. F. Crow and M. Kimura, An Introduction to Population Ge-
netics Theory (Harper and Row, New York, 1970).

[30] J. C. Claussen and A. Traulsen, Phys. Rev. E 71, 025101(R)
(2005).

021905-6



